Automatic hyperparameter optimization for clustering algorithms with reinforcement learning
نویسندگان
چکیده
منابع مشابه
Clustering with Reinforcement Learning
We show how a previously derived method of using reinforcement learning for supervised clustering of a data set can lead to a sub-optimal solution if the cluster prototypes are initialised to poor positions. We then develop three novel reward functions which show great promise in overcoming poor initialization. We illustrate the results on several data sets. We then use the clustering methods w...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملFunction Optimization Using Connectionist Reinforcement Learning Algorithms
Any nonassociative reinforcement learning algorithm can be viewed as a method for performing function optimization through (possibly noise-corrupted) sampling of function values. We describe the results of simulations in which the optima of several deterministic functions studied by Ackley (1987) were sought using variants of REINFORCE algorithms (Williams, 1987; 1988). Some of the algorithms u...
متن کاملBayesian Hyperparameter Optimization for Ensemble Learning
In this paper, we bridge the gap between hyperparameter optimization and ensemble learning by performing Bayesian optimization of an ensemble with regards to its hyperparameters. Our method consists in building a fixed-size ensemble, optimizing the configuration of one classifier of the ensemble at each iteration of the hyperparameter optimization algorithm, taking into consideration the intera...
متن کاملHyperparameter Learning for Graph Based Semi-supervised Learning Algorithms
Semi-supervised learning algorithms have been successfully applied in many applications with scarce labeled data, by utilizing the unlabeled data. One important category is graph based semi-supervised learning algorithms, for which the performance depends considerably on the quality of the graph, or its hyperparameters. In this paper, we deal with the less explored problem of learning the graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific and Technical Journal of Information Technologies, Mechanics and Optics
سال: 2019
ISSN: 2226-1494
DOI: 10.17586/2226-1494-2019-19-3-508-515